IspH–RPS1 and IspH–UbiA: “Rosetta stone” proteins

نویسندگان

  • Guodong Rao
  • Bing O'Dowd
  • Jikun Li
  • Ke Wang
  • Eric Oldfield
چکیده

The protein IspH, (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate (HMPPP) reductase, is an essential 4Fe–4S cluster-containing protein in the methylerythritol phosphate pathway for isoprenoid biosynthesis. Using a sequence similarity network we found that there are >400 IspH proteins that are about twice as large as most of the IspHs studied to date since their IspH domains are fused to either the ribosomal protein S1 (RPS1), or to a UbiA (4-hydroxybenzoate octaprenyltransferase)-like protein. Many of the IspH–RPS1 proteins are present in anaerobes found in the human gut and some, such as Clostridium botulinum, C. tetani and Fusobacterium nucleatum, are pathogens. The IspH–UbiAs are all found in sulfate-reducing anaerobes. The IspH domains in IspH–RPS1 are fused to 4 and in a few cases 6 tandem repeats in RPS1 that, in most organisms, bind to mRNA or form part of the bacterial ribosome. Mutants in which the four RPS1 domains were sequentially eliminated had similar IspH activity as wildtype protein, indicating they are not essential for IspH catalysis. Overall, the results are of interest since they represent the first isolation of a catalytically active IspH–RPS1, as well as the identification of IspH– UbiA hybrids, two “Rosetta stone” proteins that are likely to be functionally related—IspH producing the isoprenoids required for a UbiA-like prenyltransferase; the IspH–RPS1 hybrids, perhaps, being involved in the stringent response or as Fe/O2 sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IspH–RPS1 and IspH–UbiA: “Rosetta stone” proteins† †Electronic supplementary information (ESI) available: Zoomed-in view of IspH–RPS1 network, UbiA superfamily, LC-MS analysis of IspH–RPS1 catalysis, simulation of EPR spectrum, and IspH–RPS1/Rho interaction. See DOI: 10.1039/c5sc02600h Click here for additional data file.

The protein IspH, (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate (HMPPP) reductase, is an essential 4Fe-4S cluster-containing protein in the methylerythritol phosphate pathway for isoprenoid biosynthesis. Using a sequence similarity network we found that there are >400 IspH proteins that are about twice as large as most of the IspHs studied to date since their IspH domains are fused to either ...

متن کامل

Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach

The stability and accuracy of three methods which enforce either a divergence-free velocity field, density invariance, or their combination are tested here through the standard Taylor?Green and spin-down vortex problems. While various approaches to incompressible SPH (ISPH) have been proposed in the past decade, the present paper is restricted to the projection method for the pressure and veloc...

متن کامل

Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs

The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmeval...

متن کامل

Use of Broken-Symmetry Density Functional Theory To Characterize the IspH Oxidized State: Implications for IspH Mechanism and Inhibition

With current therapies becoming less efficacious due to increased drug resistance, new inhibitors of both bacterial and malarial targets are desperately needed. The recently discovered methylerythritol phosphate (MEP) pathway for isoprenoid synthesis provides novel targets for the development of such drugs. Particular attention has focused on the IspH protein, the final enzyme in the MEP pathwa...

متن کامل

Cardioprotective effect of mangiferin on isoproterenol induced myocardial infarction in rats.

Isoproterenol (ISPH) induced myocardial infarction was confirmed by disturbances in serum and heart tissue marker enzymes such as lactate dehydrogenase (LDH), creatine phospho kinase (CPK), aspartate transaminase (AST) and alanine transaminase (ALT), increased level of lipid peroxidation and histopathological changes in the heart of ISPH administered rats. Pretreatment with mangiferin (10 mg/10...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015